Supplement 1

### Distance Metric Proof

A function d(x,y) is a distance metric if it observes the following conditions for all words x and y:

- $d(x,y) = 0 \iff x = y$
- $d(x,y) \ge 0$
- d(x,y) = d(y,x)
- $d(x,y) \ge d(x,z) + d(y,z)$

**Proof for** 
$$d_{SL}(x,y) = 0 \iff x = y$$
:

Three cases need to be considered:

- 1. Words x and y are the same sequences, i.e. they are of the same length and bases at the same position are equal. Thus, no operations are necessary to transform x into y and their distance is 0
- 2. Word x is a prefix of y: x is elongated to match y exactly and no other operations are necessary, in this case we consider x to be equal to y by definition
- 3. Word y is a prefix of x, x is truncated to match the length of y and no further operations are necessary, in this case we consider x to be equal to y by definition

#### **Proof for** $d_{SL}(x,y) \geq 0$

There are either no operations necessary to transform x into y  $(d_{SL}(x,y) = 0)$  or one needs to apply substitutions, insertions, and deletions to x to transform it into y in which case  $d_{SL}(x,y) > 0$ .

**Proof for** 
$$d_{SL}(x,y) = d_{SL}(y,x)$$

All operations in this distance measure are symmetrical: An insertion of base B at position p (abbrv. ins(B,p)) is the reversal of deletion of base B at position p (abbrv. del(p)) and vice versa. A substitution of base  $B_1$  with base  $B_2$  at position p ( $sub(B_2,p)$ ) is the reversal of a substitution of base  $B_2$  with base  $B_1$  at position p ( $sub(B_1,p)$ ). Truncation (trunc()) is the reversal of the elongation (elong()) and vice versa.

The distance  $d_{SL}(x,y)$  can be expressed as a sequence of operations ins(), del(), sub() followed by either trunc() or elong() to match x with y, e.g.:  $x \to \text{sub} \to \text{ins} \to \text{del} \to \text{trunc} \to y$ . The reversal operations sequence to transform y to x is obtained by reversing the individual substitution, deletion and insertion operations in reverse order and finalize with the reverse of the elongation or truncation operation:  $y \to \text{ins} \to \text{del} \to \text{sub} \to \text{elong} \to x$ . The number of these operations is equal to the number of operations to transform x into y and therefore  $d_{SL}(y,x) = d_{SL}(x,y)$ .

```
Proof for d_{SL}(x, y) \le d_{SL}(x, z) + d_{SL}(z, y)
```

Suppose the transformation of x to z is the result of a sequence of operations  $O_{xz} = \langle o_{xz_1}, o_{xy_2}, \cdots, elong/trunc \rangle$ . The transformation of z to y is the sequence of operations  $O_{zy} = \langle o_{zy_1}, o_{zy_2}, \cdots, elong/trunc \rangle$ . By the very nature of these operations, x can be transformed to y by the concatenation of both operation sequences without the elongation or truncation followed by its own truncation or elongation:  $O_{xy} = \langle o_{xz_1}, o_{xz_2}, \cdots, o_{zy_1}, o_{zy_1}, \cdots, elong/trunc \rangle$ . The number of substitutions, deletions and insertions in  $O_{xy}$  is the sum of substitutions, deletions and insertions in  $O_{xz}$  and  $O_{zy}$  and therefore  $d_{SL}(x,y)$  is at most equal to  $d_{SL}(x,z) + d_{SL}(z,y)$ .

## **Distance Calculation**

Algorithm of distance calculation (pseudocode) using dynamical programming:

```
int function distance (Sequence sequence1, Sequence sequence2)
 set length_1 to length of sequence1
 set length_2 to length of sequence2
declare distances[length_1+1][length_2+1]
for i from 0 to length_1
  set distances[i][0] to i
for j from 0 to length_2
 set distances[0][j] to j
// Classical Levenshtein part
 for i = 1 to length_1
  for j = 1 to length_2
  set cost to 0
  if (sequence1[i-1] not equal to sequence[j-1])
   set cost to 1
  set distances[i][j] to minimum of
              distances[i-1][j-1] + cost,// Substitution
              distances[i][j-1] + 1,
                                       // Insertion
              distances[i-1][j] + 1 // Deletion
 set min_distance to distances[length_1][length_2]
// New Sequence-Levenshtein part
 // Truncating
for i from 0 to length_1
  set min_distance to minimum of min_distance and distances[i][length_2]
// Elongating
 for j from 0 to length_2
  set min_distance to minimum of min_distance and distances[length_1][j]
```

## **Code Rates**



Figure S1. Code rates of Levenshtein and Sequence-Levenshtein codes depending on the length of codewords.

# Sizes of Sequence-Levenshtein Codes

| n d | 3     | 5      |
|-----|-------|--------|
| 4   | 5     | 1      |
| 5   | 13    | 2      |
| 6   | 27    | 3      |
| 7   | 77    | 5      |
| 8   | 188   | 8      |
| 9   | 612   | 17     |
| 10  | 2123  | 40     |
| 11  | 5714  | 90     |
| 12  | 20887 | 232    |
| 13  | -     | (554)  |
| 14  | -     | (1583) |

**Table S1. Sizes of Sequence-Levenshtein Codes** Code sets were filtered for biological/chemical eligibility (c.f. Methods). We did not formally analyse or simulate barcodes of length n=13nt or n=14nt.

## Codes used in Simulation 3

Of every code, a random subset of 48 barcodes was used. The details of these codes are clarified in Table S2.

| Code Type            | Length | Distance | Code Size |
|----------------------|--------|----------|-----------|
| Levenshtein          | 6      | 3        | 66        |
| Levenshtein          | 9      | 5        | 67        |
| Sequence-Levenshtein | 7      | 3        | 77        |
| Sequence-Levenshtein | 11     | 5        | 90        |
| Linear               | 5      | 3        | 48        |
| No Correction        | 3      | NA       | 60        |

Table S2. Codes of Simulation 3